首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3294篇
  免费   440篇
  国内免费   862篇
  2024年   4篇
  2023年   64篇
  2022年   82篇
  2021年   164篇
  2020年   168篇
  2019年   180篇
  2018年   146篇
  2017年   138篇
  2016年   136篇
  2015年   226篇
  2014年   246篇
  2013年   231篇
  2012年   264篇
  2011年   248篇
  2010年   226篇
  2009年   193篇
  2008年   192篇
  2007年   167篇
  2006年   194篇
  2005年   135篇
  2004年   174篇
  2003年   142篇
  2002年   208篇
  2001年   190篇
  2000年   141篇
  1999年   76篇
  1998年   47篇
  1997年   29篇
  1996年   32篇
  1995年   41篇
  1994年   28篇
  1993年   8篇
  1992年   15篇
  1991年   6篇
  1990年   8篇
  1989年   6篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
排序方式: 共有4596条查询结果,搜索用时 18 毫秒
1.
人睫状神经营养因子的原核表达,纯化及其生物效应   总被引:2,自引:0,他引:2  
人睫状神经营养因子(hCNTF)克隆入pBV220中,在DH5α菌株中表达,重组蛋白以包含体的形式存在,表达量为菌体总蛋白的50%左右。经比较发现用2mol/L脲洗涤包含体可溶解大量可溶性细菌蛋白,且包含体损失较小。在高浓度变性剂条件下进行sepharcylS-200凝胶过滤,解决了纯化中hCNTF易聚合的问题,在低浓度变性剂条件下进行DEAE离子交换,有利于蛋白活性的保持。经两步纯化后得到均一性hCNTF,纯度达95%以上。在自然状态下使hCNTF复性。纯化复性后的hCNTF对无血清培养的鸡胚背根节神经元和脊髓腹角运动神经元有明显的维持存活和促进生长发育的生物效应。  相似文献   
2.
Four new hetisine‐type C20‐diterpenoid alkaloids, named as coreanines A–D ( 1 – 4 ), were isolated from the roots of Aconitum coreanum, together with thirteen known alkaloids ( 5 – 17 ). Their structures were elucidated by extensive spectroscopic methods including IR, HR‐ESI‐MS and NMR techniques. All the isolated compounds were screened for the acetylcholinesterase (AChE) inhibitory effects, and none of them showed considerable inhibitory activity.  相似文献   
3.
Although important factors governing the meiosis have been reported in the embryonic ovary, meiosis in postnatal testis remains poorly understood. Herein, we first report that SRY‐box 30 (Sox30) is an age‐related and essential regulator of meiosis in the postnatal testis. Sox30‐null mice exhibited uniquely impaired testis, presenting the abnormal arrest of germ‐cell differentiation and irregular Leydig cell proliferation. In aged Sox30‐null mice, the observed testicular impairments were more severe. Furthermore, the germ‐cell arrest occurred at the stage of meiotic zygotene spermatocytes, which is strongly associated with critical regulators of meiosis (such as Cyp26b1, Stra8 and Rec8) and sex differentiation (such as Rspo1, Foxl2, Sox9, Wnt4 and Ctnnb1). Mechanistically, Sox30 can activate Stra8 and Rec8, and inhibit Cyp26b1 and Ctnnb1 by direct binding to their promoters. A different Sox30 domain required for regulating the activity of these gene promoters, providing a “fail‐safe” mechanism for Sox30 to facilitate germ‐cell differentiation. Indeed, retinoic acid levels were reduced owing to increased degradation following the elevation of Cyp26b1 in Sox30‐null testes. Re‐expression of Sox30 in Sox30‐null mice successfully restored germ‐cell meiosis, differentiation and Leydig cell proliferation. Moreover, the restoration of actual fertility appeared to improve over time. Consistently, Rec8 and Stra8 were reactivated, and Cyp26b1 and Ctnnb1 were reinhibited in the restored testes. In summary, Sox30 is necessary, sufficient and age‐associated for germ‐cell meiosis and differentiation in testes by direct regulating critical regulators. This study advances our understanding of the regulation of germ‐cell meiosis and differentiation in the postnatal testis.  相似文献   
4.
Plant somatic cells have the capability to switch their cell fates from differentiated to undifferentiated status under proper culture conditions, which is designated as totipotency. As a result, plant cells can easily regenerate new tissues or organs from a wide variety of explants. However, the mechanism by which plant cells have such remarkable regeneration ability is still largely unknown. In this study, we used a set of meristem-specific marker genes to analyze the patterns of stem cell differentiation in the processes of somatic embryogenesis as well as shoot or root organogenesis in vitro. Our studies furnish preliminary and important information on the patterns of the de novo stem cell differentiation during various types of in vitro organogenesis.  相似文献   
5.
The frontline tyrosine kinase inhibitor (TKI) imatinib has revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, drug resistance is the major clinical challenge in the treatment of CML. The Hedgehog (Hh) signaling pathway and autophagy are both related to tumorigenesis, cancer therapy, and drug resistance. This study was conducted to explore whether the Hh pathway could regulate autophagy in CML cells and whether simultaneously regulating the Hh pathway and autophagy could induce cell death of drug-sensitive or -resistant BCR-ABL+ CML cells. Our results indicated that pharmacological or genetic inhibition of Hh pathway could markedly induce autophagy in BCR-ABL+ CML cells. Autophagic inhibitors or ATG5 and ATG7 silencing could significantly enhance CML cell death induced by Hh pathway suppression. Based on the above findings, our study demonstrated that simultaneously inhibiting the Hh pathway and autophagy could markedly reduce cell viability and induce apoptosis of imatinib-sensitive or -resistant BCR-ABL+ cells. Moreover, this combination had little cytotoxicity in human peripheral blood mononuclear cells (PBMCs). Furthermore, this combined strategy was related to PARP cleavage, CASP3 and CASP9 cleavage, and inhibition of the BCR-ABL oncoprotein. In conclusion, this study indicated that simultaneously inhibiting the Hh pathway and autophagy could potently kill imatinib-sensitive or -resistant BCR-ABL+ cells, providing a novel concept that simultaneously inhibiting the Hh pathway and autophagy might be a potent new strategy to overcome CML drug resistance.  相似文献   
6.
The 14-3-3 proteins regulate diverse biological processes that are implicated in cancer development, and seven 14-3-3 isoforms were identified with isoform-specific roles in different human tumors. In our previous work, we dissected the interactome of 14-3-3ε formed during the DNA damage response in a hepatocellular carcinoma (HCC) cell using an AACT/SILAC-based quantitative proteomic approach. In this study, we used a similar proteomic approach to profile/identify the 14-3-3ε interactome formed in native HCC cells. Functional categorization and data-dependent network analysis of the native HCC-specific 14-3-3ε interactome revealed that 14-3-3ε is involved in the regulation of multiple biological processes (BPs)/pathways, including cell cycle control, apoptosis, signal transduction, transport, cell adhesion, carbohydrate metabolism, and nucleic acid metabolism. Biological validation further supports that 14-3-3ε, via association with multiple BP/pathway-specific proteins, coordinates the regulation of proliferation, survival, and metastasis of HCC. The findings in this study, together with those of our previous study, provide an extensive profile of the 14-3-3ε interaction network in HCC cells, which should be valuable for understanding the pathology of HCC and HCC therapy.  相似文献   
7.
8.
Lymphocyte apoptosis after exhaustive and moderate exercise.   总被引:11,自引:0,他引:11  
Apoptosis or programmed cell death is a process of fundamental importance for regulation of the immune response. Several reasons suggest that apoptosis is involved in exercise-induced alterations of the immune system such as postexercise lymphocytopenia. Healthy volunteers performed two treadmill exercise tests; the first was performed at 80% maximal oxygen uptake until exhaustion (exhaustive exercise) and the second 2 wk later at 60% maximal oxygen uptake with the identical running time (moderate exercise). Blood samples were taken before, immediately after, and 1 h after the test. Lymphocytes were analyzed for apoptotic and necrotic cells by using FITC-labeled annexin V-antibodies and nuclear propidium iodide uptake, respectively. In addition, apoptotic/necrotic cells were measured after a 24-h incubation of lymphocytes in the presence of camptothecin or phytohemagglutinin. Finally, plasma membrane expression of CD95-receptor and CD95-receptor ligand was investigated. Immediately after the exhaustive exercise, the percentage of apoptotic cells increased significantly, whereas it remained unchanged after the moderate exercise. Similar results were obtained after 24-h incubation of lymphocytes in medium alone or in the presence of camptothecin, but not with phytohemagglutinin. We found an upregulation of CD95-receptor expression after both exercise tests. However, only after exhaustive exercise a characteristic shift in CD95 expression profile toward cells with a high receptor density was observed. Expression of the CD95-receptor ligand remained unchanged after both exhaustive and moderate exercise. These results suggest that apoptosis may contribute to the regulation of the immune response after exhaustive exercise. Whether this mechanism can be regarded either as beneficial, i.e., deletion of autoreactive cells, or harmful, i.e., suppression of the immune response, awaits further investigations.  相似文献   
9.
The INO80 complex, a SWI/SNF family chromatin remodeler, has regulatory effects on ESC self-renewal, somatic cell reprogramming and blastocyst development. However, the role of INO80 in regulating trophoblast cells and recurrent miscarriage (RM) remains elusive. To investigate the in vivo effects of Ino80 in embryo development, we disrupted Ino80 in C57 mice, which resulted in embryonic lethality. Silencing of Ino80 led to decreased survival capacity, migration and invasion of trophoblasts. Furthermore, RNA high-throughput sequencing (RNA-seq) revealed that Ino80 silencing closely resembled the gene expression changes in RM tissues. To investigate the mechanisms for these results, RNA-seq combined with high-throughput sequencing (ChIP-seq) was used in trophoblast cells, and it showed that Ino80 physically occupies promoter regions to affect the expression of invasion-associated genes. Last, Western blotting analyses and immunofluorescence staining revealed that the content of INO80 was reduced in RM patients compared to in healthy controls. This study indicates that INO80 has a specific regulatory effect on the viability, migration and invasion of trophoblast cells. Combined with its regulation of the expression of invasion-associated genes, it has been proposed that epigenetic regulation plays an important role in the occurrence of RM, potentially informing RM therapeutic strategies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号